
Preprint of an article that appeared in IEEE conference proceeding of ICWCSC 2010                                                                                 

Analysis of Open Source Drivers for IEEE 802.11 
WLANs

Vipin M 
AU-KBC Research Centre 

MIT campus of Anna University 
Chennai, India 

vipintm@au-kbc.org 

Srikanth S 
AU-KBC Research Centre 

MIT campus of Anna University 
Chennai, India 

srikanth@au-kbc.org
 
 

Abstract—The purpose of this study is to analyze the open 
source IEEE 802.11 wireless local area network (WLAN) stack 
implementation for further enhancement and implementations.  
We discuss the IEEE 802.11 WLAN implementation in the latest 
Linux kernel. This includes a functional breakdown of the driver 
and the overall flow of information via functions. We also survey 
the specific implementation methods used in the WLAN Linux 
stack. We compare the legacy driver implementation with the 
newer Linux kernel implementation. For reference, the Atheros 
network device driver is taken as an example to discuss the 
WLAN structure, stack and driver implementation.  

Keywords— Open source, Linux kernel, Network stack, 
IEEE802.11 WLAN 

I.  INTRODUCTION 
WLAN devices are common in all personal computing 

devices such as PDAs, mobile phones and laptops. IEEE 
802.11 is the de facto standard used for WLAN devices. The 
standard has evolved over the last ten years and has spawned 
into a number of subgroups such as 802.11b, 802.11a, 802.11g, 
and 802.11n [1] [2]. Each subgroup is an enhancement over the 
basic 802.11 in functionality and/or performance. The newly 
developed standards are backward compatible and support 
legacy systems. This makes it feasible for existing hardware to 
work with new products. 

In the case of software and hardware implementations, 
WLAN will be capable of handling all mandatory functions 
proposed by the standard. Depending on the vendor, they may 
implement some optional functions and proprietary features. 
The Linux kernel WLAN drivers developed by major vendors 
implement most of the mandatory functions while the others 
are still in development. The modes of operation supported by 
any WLAN device are ad-hoc, infrastructure, mesh, wireless 
distribution system (WDS), virtual access point (VAP), virtual 
interface and monitor [3]. Peer to peer connections are made in 
ad-hoc mode. In this mode, each WLAN device communicates 
directly without any central coordinator. In infrastructure 
mode, an access point (AP) is the coordinator for every client. 
All traffic passes through the AP. The mesh mode is an 
extension of ad-hoc mode. The salient feature of this mode is 
multi hop transmission. WDS has a bridging similar to Ethernet 
and also provides repeater functionalities. VAP is a multiple 
virtual AP with single hardware device. Virtual interface is 
multiple logical interfaces using a single physical interface. 

Monitor mode is used for passively sniffing the air interface. 
The standard for infrastructure and ad-hoc is IEEE 802.11a/g/n, 
for mesh is IEEE 802.11s and for security is IEEE 802.11i. 

II. LINUX KERNEL 
Linux kernel is an open source operating system kernel. 

The Linux kernel has a modular architecture. Most of the 
drivers for the peripheral hardware are built as loadable 
modules. They are loaded when new hardware is attached or at 
boot time. When any module is loaded, they export their 
functions to the kernel space. 

 
 

 

 

Figure 1.  Linux kernel interaction 

The user space applications interact with the kernel space 
modules through system calls. A simplified Linux kernel 
network stacks interaction between user applications, TCP/IP 
stack, network device driver and hardware is shown in Fig. 1.  
The operations explained in the figure can be categorized as 
configuration/management, transmission path, and receive path 
[4]. 

Insmod is a user level function that loads any kernel 
module [5]. The network device drivers may have multiple 
kernel modules based on functionalities such as hardware 
module and protocol module. Insmod calls initialization 
functions of each module. This initialization function initializes 



the hardware and registers the public functions used by other 
layers in the kernel network stack for transmission, reception 
and management. The configuration functions from the user 
level interact with the TCP/IP and the network driver for 
configuring and initialization interface. For sending the packet 
from the user level, it uses the socket function which internally 
sends the packet to the TCP/IP stack and further to the network 
driver.  The protocol modifications are made and calls transmit 
interrupt for physical transmission from hardware by the 
network driver. The packet reception and process is initiated by 
the hardware interrupt generated as it receives a packet in 
hardware in the receive path. 

Sections III describes evaluation of open source WLAN 
driver. Section IV, V and VI describes its major functionality 
namely control plane, SoftMAC, hardware driver. Sections VII 
discuss monitor mode and debugfs. 

III. EVALUTION OF OPEN SOURCE DRIVERS 
The WLAN driver in Linux kernel is structured similar to 

other network device (netdev) drivers. In general, wireless 
devices are connected through PCI or USB interfaces. The 
interconnecting driver varies based on the interface to wireless 
device like PCI or USB. Wireless netdev is similar to an 
Ethernet interface for higher layer with extra features such as 
ad-hoc. The network driver for Atheros WLAN hardware was 
initially started as an independent project and is now a part of 
the Linux kernel itself. 

Earlier, network interface hardware used to handle the 
medium access control (MAC) and other lower layer protocols. 
The other implementation model was network device hardware 
and firmware. None of the above types of implementations 
provided the end user developer, the freedom for development 
because they didn’t have the access to the firmware code. The 
next generation of network devices moved the MAC 
functionalities to software. The software MAC (SoftMAC) is 
loaded as a Linux kernel module. This implementation method 
gave the end user developer more access to code. The two 
major IEEE 802.11 WLAN SoftMAC implementations are 
net80211 [6] and mac80211 [7]. 

 

Figure 2.  MADWiFi Structure 

The original open source Atheros driver is developed for 
FreeBSD. MADWiFi is a modified version of it. MADWiFi 
drivers work with binary and open hardware abstraction layer 
(HAL) and net80211.  MADWiFi driver is under dual license 
BSD and GPL v2 [3]. 

Fig. 2 shows the MADWiFi structure. net80211, ath, HAL 
and proprietary algorithms are in kernel space [6]. HAL is a 
piece of software that handles the access to the WLAN 
hardware.  This is unlike firmware, which loads into the 
onboard microcontroller. HAL executes in the host processor 
and provides application programming interfaces (APIs) to the 
driver in order to access the hardware. Atheros hardware is 
flexible and it is capable of working in a wide range of 
frequency spectrum. HAL restricts use of frequency band and 
power based on the operating country. HAL acts as a wrapper 
around the hardware registries. This allows the driver to 
interact with hardware in the permissive manner. At present, 
some versions of HAL source code are open source. The newer 
versions of MADWiFi work with openHAL. 

The original net802.11 is an IEEE 802.11 SoftMAC 
implementation of FreeBSD. The stack net80211 was 
suggested as the generic stack for IEEE 802.11 to Linux kernel, 
but did not satisfy the criteria of a real Linux kernel network 
stack and was never picked. net80211 supports a wide range of 
modes such as station (STA), AP, ad-hoc, monitor and WDS. 
The other device dependent codes are in ath module. The ath 
module includes Atheros network hardware dependent 
functions such as hardware initialization and interface 
configuration. Other functions are implemented as separate 
modules. For e.g., rate adaptation, sync scan are implemented 
as loadable modules. 

The new implementation of WLAN network device is as a 
part of Linux kernel source tree [8]. This implementation is 
based on SoftMAC. 

 

Figure 3.  Linux kernel stack 

In Fig. 3, the layer diagram of a WLAN driver in the Linux 
kernel stack and higher layer protocols is shown. WLAN 
device drivers are divided into two modules (kernel 
components) namely hardware dependant module and protocol 
module (softMAC). The hardware dependant modules are 
different for each vendor and based on capabilities. The 
softMAC handles most of the MAC functionality with respect 
to IEEE 802.11 protocol. The functions in softMAC are used 
by hardware drivers amongst different vendor. In the case of 



WLAN, this softMAC implementation is known as mac80211. 
The hardware dependent drivers are Atheros ath9k [9], ath5k 
[10] and Intel iwlwifi [11]. Mac80211 and ath9k are considered 
in further discussion of WLAN devices in the Linux kernel. 

In order to understand the flow of the WLAN driver and its 
structure, its functionality can be divided in to 3 parts. 

• Control plane 

• SoftMAC 

• Hardware driver 

IV. CONTROL PLANE 
In WLANs, scanning, association and setting specific 

threshold values (RTS, Fragmentation etc) are initiated and 
controlled from the user space. 

 

Figure 4.  Structure of mac80211 – ath9k 

In Fig. 4, the modular structure of mac80211 - ath9k 
WLAN driver is shown. It gives an abstracted view of the 
interaction between the various layers. cfg80211 [12], 
mac80211 and ath9k are in kernel space and the applications 
for control and management are in the user space. The user 
space application makes use of the nl80211 [13] calls to 
interact with cfg80211 which in turn communicates with 
mac80211. The controls are initiated from a user space 
application and are in turn transferred through system calls. 

MADWifi driver uses wireless-extension (wext) for all 
configuration and management functionalities from user level 
[14]. There are no intermediate layers such as cfg80211. The 
configurations are made using system calls directly to the 
network device driver. Nl80211 and cfg80211 clearly defined 
the semantics of commands than wireless-extension. Nl80211 
is a complete redesigned of wireless settings flow. 

A. User Space 
The user space comprises of graphical user interface (GUI) 

and command line network management application, through 
which it controls and configures WLAN devices. This allows 
configuring physical layer and MAC layer parameters 
including security. For e.g. NetworkManager [15], iw [16], 

wpa_supplicant [17] and hostapd [18]. NetworkManager is a 
general network management GUI application whereas iw, 
wpa_supplicant and hostapd are specific wireless command 
line tools. 

These tools use nl80211 header defined system calls to 
interact with cfg80211, where nl80211 is new 802.11 netlink 
functions which is under development. A number of 
interactions from the user space to mac80211 are carried out 
through wireless-extensions (wext) that are primitive user 
control functions. 

NetworkManager use wpa_supplicant internally to achieve 
wireless functionalities. In the case of wpa_supplicant, it uses 
new nl80211 netlink functions. Hostapd use nl80211 and 
radiotap functions to implement AP functions. 

B. Cfg80211 
This layer exists between the user space and protocol driver 

(mac80211). These set of APIs perform sanity check and 
protocol translation to configure wireless devices. It provides 
functions for 

• Device registration 

• Regularity enforcement 

• Station management 

• Key management 

• Mesh management 

• Virtual Interface management 

• Scanning 

Device registration includes band, channel, bit rate, high 
throughput (HT) capabilities and supported interface modes. 
Regularity enforcement will ensure during the registration of 
cfg80211 that only the specified frequency channels permitted 
for that given country will be enabled. Station management 
include add, remove, modify stations and dump station details. 
These functions are part of AP capabilities. 

In mesh path handling, mesh parameter set and retrieve are 
the functions provided for mesh management. Virtual interface 
management provides create, remove, change type and monitor 
flags. It also keeps track of the network wireless interface. 
Scanning allows user level initialization of scanning and 
reporting. 

V. SALIENT FUNCTIONALITIES OF SOFTMAC 
SoftMAC supports IEEE 80211 a/b/d/g /n and s, different 

types of interfaces and QoS. The types of interfaces include 
STA, AP, monitor and mesh. It handles the following protocol 
functionalities: 

• Transmission Path 

• Receive Path 



A. Transmission Path 
The higher layer transfers the packet structure to the MAC 

by calling kernel public transmission function. 

 

Figure 5.  Functional flow for transmission in mac80211 

In Fig. 5, the functional flow of the transmission path of 
WLAN protocol stacks mac80211 is shown.  The higher layer 
packet will be converted to IEEE 802.11 frame format and 
initializes all its required buffers and headers. The transmit 
handlers - selects the key, transmission rate, inserts the 
sequence number (based on the hardware capability), selects 
the encryption algorithm, fragmentation, calculates the 
transmission time and generates control information for 
transmission. 

B. Receive Path 
Hardware driver ath sends the frame to the protocol driver 

mac80211 along with the hardware receive status information. 

 

Figure 6.  Functional flow for reseption in mac80211 

In Fig. 6, the functional flow of frame from the hardware 
driver to higher layer logical link control (LLC) and TCP/IP is 
shown. In the receive path: mac80211 checks the type of the 
packet, receive status and prepares the receive handlers. 

Receive handler verifies the alignment of the packet for proper 
processing, decryption and defragmentation.  The frames with 
aggregation, control frame (Block Acknowledgment), next 
management frame exchange are processed.  The IEEE 802.11 
frames are converted to IEEE 802.3 + LLC and sent to the 
higher layer. 

VI. SALIENT FUNCTIONALITIES OF HARDWARE DRIVER 
Ath9k is the device driver for Atheros IEEE 802.11n based 

wireless devices. It uses mac80211 as the protocol driver. For 
better understanding, the whole structure of wireless driver is 
explained based on its functional flow. 

• Transmission Path 

• Receive Path 

A. Transmission Path 

 

Figure 7.  Functional flow for transmission in ath9k 

In Fig. 7, the functional flow of the transmission path is 
shown. Since a packet is received at ath driver from mac80211, 
initialize the required buffers and maps it to the hardware 
queues.  Transmit flags are assigned depending on the type of 
the packet, physical layer parameters and control information. 
The packets are transferred to the hardware through the 
interconnection driver using DMA. Transmit interrupt initiates 
for the transfer of the frame from the hardware and checks the 
status for reporting and retry. 

B. Receive Path 
In Fig. 8 the functional flow of reception of packet from 

hardware to the protocol stack is shown. When a packet is 
received by the hardware, it generates a receive interrupt. The 
ath function which is mapped to receive interrupt will generate 
required locks for fetching the packets from hardware and 
transferring it to protocol stack mac80211 with status 
information. 



 

Figure 8.  Functional flow for reception in ath9k 

VII. OTHER FUNCTIONS 

A. Monitor mode 
In monitor mode of operations, the interface does not join 

to any network. This mode is generally used for passive 
sniffing. The interface receives all packets in its listening 
channel, even though it may not be destined for it. The protocol 
driver mac80211 sends upstream the unaltered IEEE 802.11 
MAC packet with certain extra header information. The extra 
header radiotap includes physical layer information such as 
received channel, signal quality, signal to noise ratio, antenna 
and modulation scheme [19]. Sniffing tools such as Wireshark 
[20] use Pcap [21] function to get these packets to the 
application layer. 

 

Figure 9.  Functional flow of packet injection 

The other purpose of monitor mode is packet injection. It is 
possible to inject random IEEE 802.11 MAC frames using the 
radiotap header and monitor mode WLAN network interface. 
Fig. 9 shows the functional flow of packet injection. This is 
possible by assembling the packet with minimum required 
radiotap header and sending it to the driver using kernel socket 
functions. W-meter is one of the open source tool, which is 
used for arbitrary frame injection [22]. 

B. Debugfs 
This is an in-kernel file-system designed to help kernel 

developers easily export debug data to user-space. The debugfs 
is an interactive system debugger and can be used to examine 
and change the values of kernel module variables [23]. 

 

Figure 10.  debugfs working model 

debugfs make use of kernel functions to create a file in the 
in-kernel file system and  read/write  the kernel module values 
to this file. The in-kernel file system is mounted to physical file 
system in order to examine and modify the kernel module 
values. 

VIII. CONCLUSION 
In this survey, we discussed the evolution and general 

implementation of WLAN drivers in the Linux kernel by 
considering the Atheros driver as an example. We discussed 
the functionalities of different components and traced out the 
important characteristics of the same. This study the will help 
the developers understand the details of driver implementation 
in the Linux kernel. 

REFERENCES 
[1] http://standards.ieee.org/getieee802/ retrieved on 09/15/09. 
[2] http://grouper.ieee.org/groups/802/11/  retrieved on 09/15/09. 
[3] http://madwifi-project.org/wiki/About retrieved on 09/15/09. 
[4] Klaus Wehrle, The Linux Networking Architecture: Design and 

Implementation of Network Protocols in the Linux Kernel, Prentice 
Hall, 2003. 

[5] Jonathan Corbet, Linux Device Drivers, 3rd ed, O'Reilly, 2005. 
[6] http://madwifi-project.org/wiki/DevDocs retrieved on 09/15/09. 
[7] http://linuxwireless.org/en/developers/Documentation/mac80211 

retrieved on 09/15/09. 
[8] git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-testing.git 

retrieved on 09/15/09. 
[9] http://linuxwireless.org/en/users/Drivers/ath5k retrieved on 09/15/09. 
[10] http://linuxwireless.org/en/users/Drivers/ath9k retrieved on 09/15/09. 
[11] http://intellinuxwireless.org/?p=iwlwifi retrieved on 09/15/09. 
[12] http://linuxwireless.org/en/developers/Documentation/cfg80211 

retrieved on 09/15/09. 
[13] http://linuxwireless.org/en/developers/Documentation/nl80211 retrieved 

on 09/15/09. 
[14] http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html 

retrieved on 09/15/09. 
[15] http://projects.gnome.org/NetworkManager retrieved on 09/15/09. 
[16] http://linuxwireless.org/en/users/Documentation/iw retrieved on 

09/15/09. 
[17] http://hostap.epitest.fi/wpa_supplicant/ retrieved on 09/15/09. 
[18] http://hostap.epitest.fi/hostapd/ retrieved on 09/15/09. 
[19] http://www.radiotap.org/  retrieved on 09/15/09. 
[20] http://www.wireshark.org/ retrieved on 09/15/09. 
[21] http://www.tcpdump.org/pcap3_man.html retrieved on 09/15/09. 
[22] http://sourceforge.net/apps/trac/w-meter/ retrieved on 09/15/09. 
[23] http://kerneltrap.org/node/4394 retrieved on 09/15/09. 


